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ABSTRACT

This is an interim report which summarizes the
initial work on a theoretical study of some aspects
of the interaction between a drifting stream of
electroﬁs with transverse cyclotron motions.and an
electromagnetic field. Particular emphasis is given
to the possible generation and amplification of
millimeter waves. The report includes brief discussions
of the classes of interaction of interest, the
structure of d-c, axially symmetric, magnetically
focused, relativistic electron beams, and
consideration of the electron beam as a spatially

dispersive dielectric medium.
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I. INTRODUCTION

The objective of this research program is to explore
theoretically some aspects of the interaction between
a drifting stream of electrons having transverse
cyclotron motions and an electromagnetic field;
particular emphasis being given to the possible
generation and amplification of millimeter waves.
Because of the interest in the possible applications
to millimeter wavelengths, the study concentrates on
electron stream-electromagnetic field interactions which
do not involve an r-f slow wave circuit structure.

This interim report summarizes the initial work on
the program. It includes brief discussions of the
classes of interaction of interest, the structure of
d-c, axially symmetric, magnetically focused,
relativistic electron beams, and consideration of the
electron beam as a spatially dispersive dielectric

medium.



II. CLASSES OF INTERACTION

The general classification of interactions involving
a drifting electron stream with transverse cyclotron
motions 1s very broad, even when one excludes inter-
actions with electromagnetic waves propagating along
slow wave structures (e.g., transverse wave traveling
wave tubes and backward wave oscillators, magnetrons,
etc.). Many of the possible devices have been included
in a representative list recently enumerated and dis-
cussed relative to millimeter wave generation by Kulke
and Veronda*; therefore, a listing will not be repeated
here. They classify electron beam devices into three
major groups: (1) periodic circuit devices, (2) periodic
beam devices, and (3) beam harmonic couplers. This
study is concerned with a subclass of the first class
(d-c pumped transverse wave parametric amplifiers) and
the class of periodic beam devices.

Among the devices or interaction schemes to be
considered there are many similarities. For example,
in almost all cases of amplifiefs, an input coupling
region, a gain region, and an output coupling region
can be identified, although in some cases these regions

may overlap to some extent. Also, in almost all cases

x
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the mechanism of gain can be qualitatively explained
(using a wave picture) as the interaction between two
waves. In the d-c pumped transverse wave parametric
amplifier these two waves are both beam. waves; i.e.,
two cyclotron waves, two synchronous waves, or a
cyclotron and a synchronous wave. In a rippled beam
amplifier, Ubitron, cyclotron resonance amplifier, ete.,
one wave is a beam wave and the other is a wave
associated with a uniform r-f circuit or waveguide.

The most effective means of comparing these
different devices in a general manner is probably on
the basis of arwave analysis, although this must certainly
oversimplify many aspects of the detailed interaction
mechanisms. Of the several possible types of wave
analysis including field solution of the boundary value
problem, expansion in normal modes, and coupled mode
gnalysis, the latter is the most suitable for a general,
qualitative comparison of the various devices. The
others are too detailed and unwieldy for a survey.

One of the major attractions of the d-c pumped
paremetric amplifier class of interaction also lies
at the heart of its most serious disadvantage in practice.
The major attraction is that the gain mechanism involves
the interaction between two beam wzves, thus in the gain

region no r-f structure is required. Bul pul in other
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terms, this means that the beam in the absence of an
input r-f signal must be in a state of unstable
equilibrium in this gain region as far as transverse
displacements are concerned. When an r-f input signal
perturbs the beam, this pefturbation grows and the
signal is amplified. The function of the d-c pump
structure is to provide the d-c electric and/or magnetic
fields in the gain region which cause the unstable
equilibrium of the d-c beam. A msjor problem is to
ensure that the pump fields provide instability (i.e.,
gain) for only the desired r-f signal perturbations
and not for other d-c or a-c perturbaticns which are
‘unavoidably present due to tolerance limitations, noise,
stray fields, etc. And, perhaps even more difficult,
to avoid instabilities for these other extraneous
perturvations not only for the d-c¢ beam, but also when
the beam has been perturbed by the desired r-f input
éignal. This is the problem of "beam blow up" in d-c
pumped transverse wave parametric amplifiers. Although
various theoretical analyses have indicated that these
problems may be minimized in certain ways, experimental
evidence of a successful solution to these problems has
not yet been obtained.

Although the d-c pumped parametric amplifier does

not reguire an r-f circuit in the gain region, 1t does



require a a—c pump structure which must provide a
periodically varying electric or magnetic field. This
is certainly a disadvantage for millimeter wavelength
operation. Although the problems of r-f losses at
millimeter wavelengths are avoided, the problems of
machining and tolerances in the construction of periodic
circuits with short periods must be solved.

It would appear then that d-c pumped parametric
amplifiers have two major inherent disadvantages
compared to periodic beam devices using a uniform r-f
circuit in the gain region. It should be noted, however,
that many of the periodic beam devices also use a
pericdic perturbation of the beam to produce the rippling,
undulation, etc., desired. In these cases, the periodic
beam devices would also have some of the same problems
with a short period d-c¢ structure that the d-c¢ pumped
parametric amplifier might have. However, the serious
problem of beam blow up is not present, at least 1f the
beam focusing and periodic perturbation are designed to
avoid any parametric amplification effects in the gain
region. And, of course, it is possible to produce a
ripple on an electron beam by the proper control of the
focusing conditions without the presence of a periodic

structure, and this approach might be used.



At this time, the periodic beam class of interaction
would appear to offer'superior promise, in principle,
for the generation and amplification of short microwaves

in the millimeter wavelength region.



III. RELATIVISTIC ELECTRON BEAMS

In any study of electron stream interaction involving
transverse displacements and velocities, the unperturbed
d-c electron beam is important as the basic starting
point for the analysis. This study is concerned with
transverse interactions 1n beams focussed, among other
methods; by a finite axial magnetic field. As a background
for the interaction analysis, the focusing of an
axially symmetric, uniform electron stream was briefly
examined for several possible initlal conditions.
Because of the possible importance of relativistic
effects, as for example in the electron cyclotron maser,
the influence of special relativity was included in this

analysis. Some of the results are noted here.

A. Basic Equations
The basic equations of motion for d-c, axially
symmetric electron beam can be written in cylindrical

coordinates as
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Here e 1g the magnitude of the electron charge, m is

the electron rest mass,

= 7 | (2)

@ is the scalar potential, and E and B are the total
electric field and magnetic flux density (including both
the applied and self fields).

In this case of an axially -symmetric beam, it is
seen from (1b) and (1d) that two quantities are

conserved along the beam;
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If it is assumed that the electron velocity at the
cathode surface is zero, then examination of Equations
(1a)-(1d) shows that this is a necessary and sufficient
condition for the cathode to be a unipotential surface.
This is assumed hereafter, and the cathode potential is
taken to be zero. Then using the conserved quantities

of (3a) and (3b), one can write
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Here r_ is the radial position at the cathode (z = 0)
of an electron which has the radial position r at an
axial position z, and BCZ is the axial magnetic flux
density at the cathode. Equation (%#a) is Busch's
theorem in relativistic form.

We are mainly interested in electron beams in drift
regions where the applied magnetic field is only in the
z direction, Br = 0, % = 0, and all quantities are

independent of z as well as 9. The basic equations are

now (la), (%a), and (4b), since (lc) becomes identially

[

zero. Introducing the plasmz freguency



o = <= (5a)

and the cyclotron frequency associated with the applied

d-c axial magnetic flux density B7a,

B , (5b)

one can write
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where b is the beam radius. The basic equations are

now
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B. Brillouin Flow*

The conditions under which é and é can be independent
.0f r are discussed briefly. First, no magnetic flux can
link the cathode, or BCZ = 0. This is the usual condition
familiar from nonrelativistic theory. Note however,
that BCZ includes both the applied axial magnetic flux
density and that due to any azimuthal beam current in
the vicinity of the cathode. Thus, one might have to
apply some small axial magnetic field in the proper
direction at the cathode to establish Brillouin flow.

The second condition is that the radial variation
of the space charge density and the applied axial magnetic

flux density in the drift region must vary with r such that

elativistic Brillcocuin flow hzve also
Packn and Ulricth.
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Note that as the beam voltage is raised to operate
further in the relativistic regime, the more the charge
density is concentrated at the beam edge.

The total axial beam current is given by
b

2rme . .
0 2
I, = —5 z‘/’ Wy (r) rdr . (9)

O

Inserting wp(r) from (8a), Equation (9) can be integrated
to give I in terms of b, 0, and @(b). One finds that
for fixed b and @(b) there is a maximum possible beam

current given by
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At low voltages this reduces to the familiar value

3/2
5.4 x 107° tﬁ(b)"/

amperes, while at very high
voltages the maxiﬁum current tends to become
proportional to BZ(bi]B. Pigure 1 shoWs I, versus #(b)
for a wide range of beam voltages.

The axial and angular velocities, suitably normalized,
are plotted in Figure 2 Versué the beam voltage for the
maximum beam current Im, and for a beam current of one-
tenth the maximum value. The sensitivity of the axial
velocity to the beam current at a given beam voltage
is clearly evident. At low beam voltages, é/c and bé/c

are proportional to ﬁl/g.

lO4 volts, z/c and b6/c depart from this dependence and

At beam voltages above about

approach assympotically to 0.577 and 0.817 respectively
as @ approaches infinity (for maximum current).

Figure % shows the dependence of the beam plasma
frequéncy and the cyclotron frequency of the applied axial
magnetic field on the beam voltage for beam currents
equal'to the maximum value and one-tenth of the maximum
value. Again, at lQW'Voltages wpb/c and mab/c are

1/2.

proportional to ¢ Above about 104 volts, they start

to increase much more rapidly with @; their assymptotic
dependence at large beam voltage is as ﬁb/g for w.b/c,

p
and as @- for wab/c.
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AXTAL AND ANGULAR VELOCITY

10

(d)

&

(b)

107" , . : :
10° 103 10" 10° 10°
BEAM VOLTAGE, ¢(b), VOLTS
FIGURE 2. Normalized Axial and Angular Velocities Versus Beam

Voltage for a Brillouin Beam With Maximum Beam Current
Im and one-tenth Maximum Beam Current Im/lO‘ (a)z/c
for Im; (b) z/c for Im/lO' (¢) Dbd/c For Iy
(q) b6/10 for I, , 4.

15




PLASMA AND CYCLOTRON FREQUENCY
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C. Uniform Charge Density Beam

There are, of course, an infinite variety of axially
symmetric electron beams one might consider. Attention
will be confined here to one class which seems of
considerable practical interest. This is an electron
beam in which the charge density is uniform with radius;
i.e., ab is a constant in the drift region. Further,
it is assumed that the relative axial magnetic flux
density pattern is similar in both the drift region
and the cathode region, so that

B

=1 - cz
BZ

(11)

e

is a constant for a given beam. This parameter is
defined so that T = O corresponds to the full magnetic
flux linking the cathodg)o <N < 1 to partial magnetic
flux linking the cathode, T = 1 to no magnetic flux
linking the cathode, and 1 < N < 2 to reversed magnetic
flux linking the cathode. Finally, it is assumed Tor
simiplicity that the total axial magnetic flux density
in the drift region is independent of r. Thus W, = eBza/m
must vary across the beam in order that O, = eBZ/m be
constant; W, is the cyclotron frequency including both
the applied and the self magnetic fields.

With these assumptions, one finds that é and é

must now vary with r in the drift region. For convenience,
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one introduces the parameter

1

N 2200
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Examination of the basic equations leads oneto conclude

that this parameter can alsc be written as
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Combining Equations (7a), (7b), and (7c), and

using the parameters introduced, one finds that
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The expression for the axial velocity, z/c, can be
simplified somewhat if it is assumed that (wpb/Ec) << 1

a condition wnich is not inconsistent with relativistic

flow. With this approximation,
5 abr 2
JIZ Q - 1 + Q ( 2C)
p 2 2 P 1 P
[Q + (—5z) LQ -1+ s (5g) - Py ( C).}

Using this simplified form for the axial velocity, the

total beam current is
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Several observations can be drawn from the expression
for the total beam current, Equation (16). First, for
fixed beam voltage @(b), the maximum value of total beam
current occurs for = 1 (note that © > 1). This means
that the maximum current is obtained when the axial
velocity at the center of the beam is zero. In terms
of current density the beam is essentially a hollow
beam, although the charge density is uniform with radius.
A second observation is that in the nonrelativistic
limit, the maximum current is given by (still for § = 1)

— 3/2

I, = 57.1x 107 [p)] 7 (A7)

a value which is 2.25 times larger than for a Brillouin
beam of the same radius and voltage. On the other hand,
at very large beam voltages the current varies more
slowly with the beam voltage; the assymptotic 1limit is
that the current varies as the first power of the beam
voltage.

| The relationship between the angular velocity at
the beam center and the plasma frequency is displayed
in Figure U4 where -.é(O)/coC is plotted versus wp/wc for
several values of axial velocity at the beam center.
Note that the point é(O)wC = 1 specifies a condition

in which no magnetic flux links the cathode. This 1s

20




ANGULAR VELOCITY

2.0 (a)
\
(b
(c)
1.54
1.0
0.5
0 T T Y 1
0 0.5 1.0 1.5 2.0

PLASMA FREQUENCY

FIGURE 4. Normalized Angular Velocity e(o)/w Versus
Normalized Plasma Frequency w /w ror an
Uniform Charge Density Beam.
(a) z(o)/c O,
(b) z(o)/c = 0.197,
(¢) z(o)/c 0.416.

nmn

21



not referred to here as Brillouin flow; that term is
reserved (perhaps arbitrarily) for the case where z
and é are independent of r in addition to having no
magnetic flux linking the cathode.

Figures 5 and 6 show the variation of the axial
and angular velocities across the beam for various
values of & and 1 (in the case of the argular velocity).
Since the charge density is constant across the beam,
the curve of é/c is proportional to the axial current
density; it displays the degree of "hollownessY of the

beam for various values of Q.

2e




AXIAL VELOCITY
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IV. ELECTRON BEAM AS A SPATIALLY DISPERSIVE MEDIUM

It is desirable for some small signal analyses
of electron beam interaction to treat the electron
beam as a dielectric medium. When this procedure is
used, the a-c beam velocity, current density, and charge
density are removed from the interaction equations by
expressing them in terms of the beam polarization P.
This quantity is introduced to account for the a-c
perturbation of the electrons from their positions in
the absence of an r-f signal. For example, when the
electron motion is confined to the axial direction, the
a-c beam velocity, current density, and charge density

are given by

1 d
vV = p—o 'a% 5 (188..)
p=-32 . (18¢)

The introduction of the beam polarization allows
the beam to be treated as a dielectric medium, and the
gsolution of a beam-circuit interaction problem consicts
of the solution of Maxwell's equationsg with the appropriate

3 Iy oo s S Ny D el osrr Ay vy LT e e P o e e ey
poundary conditions. The btezn current dengity and chargo
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density do not appear explicitly in Maxwell's equations
since they have been absorbed into the electric
polarization. The equations of motion for the beam

are used to establish the constitutive realtions for

the medium; that is, the dependence of P on the electric
field (and possibly the magnetic field) which gives the
effective susceptibility. In general, the susceptibility
will be a tensor.

It is found that the electron beam when considered
as a dielectric medium has spatial as well as temporal
dispersion. This means that the susceptibility depends
explicitly on the propagation constant in addition to
the freguency. There are several consequences of the

3

dispersive character of the medium. Two of the most
important are tnat the time average stored energy density
and the time average density of power flow for a medium

of infinite extent with wave propagation in the z direction

are given by
1{ =% o(we =, =5 _ ofon +
“T=H1(E'sz'h+H' ”ﬁﬁ H] (192)

P = %-{E x A% + EXx x H - EZ !E* . éig%l . E o+ ﬁ*
— '
O (ayL il
olen) i (19b)
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These generalized expressions include the stored
energy and power flow associated with the sources of
the dispersion in the medium. Thus in the case of an
electron beam, these expressions include the kinetic
energy and power flow due to the a-c motion of the
electrons. Since the beam velocity and current density
do not appear explicitly in this formation, all of the
contributicns to the energy and power flow due to the
mechanical motion of the electrons must be included via
the effective susceptibility of the electron beam. In
effect, Equation (19b) is the small signal power theorem
for the bean.

The application of this method of analysis to an
electron beam of infinite cross sectlon has been treated
in some detail previously.4’5 This discussion points
out that the expressions for thé time average energy
density and power flow, (19a) and (19b), hold as well
for an electron beam of finite cross section if the
transverse boundary of the beam has an impedance
independent of the frequency and propagation constant.
A short circuit and an open circuit are the two most
important examples. In other words, (19a) and (19b)

hold if the system considered 1s homogeneous; for example,

an elesctron beam Tilling a drifi tube.

o
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The physical reason that (19a) and (19b) are valid
for the finite system considered, although they ware
derived for a system cof infinitec cross szction wiih no
transverse variation of the fields, is easily seen. In
the present case, although the fields will vary in the
transverse direction, because of the homogeneity of
the system the transverse variation of the fields will
be independent of both the frequency and the propagation
constant. For example, a possible field component might

vary as

A(w,B) sin (Elg—) e‘j(m‘:_‘jBZ

‘or perhaps,

Alw,B) I (Rﬁ_é) cos (ne) edWt-JPz

where R 1is a root of I, (Ry) = d. Regardless of the
particular values of the frequency and propagation
constant, the transverse variation remains the same.
Thus for a given mocde, the trangverse variation
is rixed, and the parameters describing this variation
(sometimes termed the transverse propagation constante)
arc constants. The effective susceptibility of the
medivm for a particular mode will depend only on the
frequency and the longitudinal propagsation constant

ad.

since ihe transverce variastion of the modes is fix

4



Therefore, the expressions given above for a dispersive
medium of infinite cross section also apply to a mode

of a homogeneous system of finite cross section.
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